Neuron.Normalisation
type neuron_typ = {
mutable axis : int;
mutable beta : Optimise.Algodiff.t;
mutable gamma : Optimise.Algodiff.t;
mutable mu : Optimise.Algodiff.t;
mutable var : Optimise.Algodiff.t;
mutable decay : Optimise.Algodiff.t;
mutable training : bool;
mutable in_shape : int array;
mutable out_shape : int array;
}
Neuron type definition.
val create :
?training:bool ->
?decay:float ->
?mu:Optimise.Algodiff.A.arr ->
?var:Optimise.Algodiff.A.arr ->
int ->
neuron_typ
Create the neuron. Note that axis 0 is the batch axis.
val connect : int array -> neuron_typ -> unit
Connect this neuron to others in a neural network.
val init : neuron_typ -> unit
Initialise the neuron and its parameters.
val reset : neuron_typ -> unit
Reset the parameters in a neuron.
val mktag : int -> neuron_typ -> unit
Tag the neuron, used by Algodiff
module.
val mkpar : neuron_typ -> Optimise.Algodiff.t array
Assemble all the trainable parameters in an array, used by Optimise
module.
val mkpri : neuron_typ -> Optimise.Algodiff.t array
Assemble all the primial values in an array, used by Optimise
module.
val mkadj : neuron_typ -> Optimise.Algodiff.t array
Assemble all the adjacent values in an array, used by Optimise
module.
val update : neuron_typ -> Optimise.Algodiff.t array -> unit
Update trainable parameters of the neuron, used by Optimise
module.
val load_weights : neuron_typ -> Optimise.Algodiff.t array -> unit
Load both trainable and non-trainable parameters into the neuron.
val save_weights : neuron_typ -> Optimise.Algodiff.t array
Assemble both trainable and non-trainable parameters of the neuron.
val copy : neuron_typ -> neuron_typ
Make a deep copy of the neuron and its parameters.
val run : Optimise.Algodiff.t -> neuron_typ -> Optimise.Algodiff.t
Execute the computation in this neuron.
val to_string : neuron_typ -> string
Convert the neuron to its string representation. The string is often a summary of the parameters defined in the neuron.