Make.Normalisation
type neuron_typ = {
mutable axis : int;
mutable beta : Optimise.Algodiff.t;
mutable gamma : Optimise.Algodiff.t;
mutable mu : Optimise.Algodiff.t;
mutable var : Optimise.Algodiff.t;
mutable decay : Optimise.Algodiff.t;
mutable training : bool;
mutable in_shape : int array;
mutable out_shape : int array;
}
val create :
?training:bool ->
?decay:float ->
?mu:Optimise.Algodiff.A.arr ->
?var:Optimise.Algodiff.A.arr ->
int ->
neuron_typ
val connect : int array -> neuron_typ -> unit
val init : neuron_typ -> unit
val reset : neuron_typ -> unit
val mktag : int -> neuron_typ -> unit
val mkpar : neuron_typ -> Optimise.Algodiff.t array
val mkpri : neuron_typ -> Optimise.Algodiff.t array
val mkadj : neuron_typ -> Optimise.Algodiff.t array
val update : neuron_typ -> Optimise.Algodiff.t array -> unit
val load_weights : neuron_typ -> Optimise.Algodiff.t array -> unit
val save_weights : neuron_typ -> Optimise.Algodiff.t array
val copy : neuron_typ -> neuron_typ
val run : Optimise.Algodiff.t -> neuron_typ -> Optimise.Algodiff.t
val to_string : neuron_typ -> string