Part 1: Numerical Techniques
1. Introduction
2. Conventions
3. Visualisation
4. Mathematical Functions
5. Statistical Functions
6. N-Dimensional Arrays
7. Slicing and Broadcasting
8. Linear Algebra
9. Ordinary Differential Equations
10. Signal Processing
11. Algorithmic Differentiation
12. Optimisation
13. Regression
14. Deep Neural Networks
15. Natural Language Processing
16. Dataframe for Tabular Data
17. Symbolic Representation
Part 2: System Architecture
18. Architecture Overview
19. Core Optimisation
20. Automatic Empirical Tuning
21. Computation Graph
22. Scripting and Zoo System
23. Compiler Backends
24. Distributed Computing
25. Testing Framework
26. Constants and Metric System
27. Internal Utility Modules